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Efficient combustion of fuels with lower emissions levels has become a demanding task in modern power plants, and new tools
are needed to diagnose their energy production. The goals of the study were to find dependencies between process variables and
the concentrations of gaseous emission components and to create multivariate nonlinear models describing their formation in the
process. First, a generic process model was created by using a self-organizing map, which was clustered with the k-means algorithm
to create subsets representing the different states of the process. Characteristically, these process states may include high- and low-
load situations and transition states where the load is increased or decreased. Then emission models were constructed for both the
entire process and for the process state of high boiler load. The main conclusion is that the methodology used is able to reveal such
phenomena that occur within the process states and that could otherwise be difficult to observe.

1. Introduction

The international efforts to reduce harmful process emis-
sions, such as nitrogen oxides (NOx), sulfur dioxide (SO2),
and carbon monoxide (CO), are increasingly affecting
the production of energy. For example, the tightening
environmental legislation [1] and rising fuel prices are
increasing the requirements for the efficiency of combustion
processes. Nonetheless, efficient combustion of fuels with
lower emissions is increasingly difficult in power plants. The
pressure to lift the price of electricity is causing an additional
challenge because the producers are forced to search for
cheaper fuels of lower quality, such as waste, recycled fuels
or poor-quality coal. When it comes to the reduction of
emissions, these fuels are extremely challenging.

The different gaseous emission components have several
harmful effects on the environment and humanbeings.
For example, the NOx, although not being considered a
greenhouse gas, can cause acid fallout and participates in the
formation of photochemical smog and ozone in big cities [2].
Sulfur dioxide has the potential to damage vegetation and
to acidify freshwater resources [3]. Carbon monoxide is a

poisonous gas that poses a threat for both the humans [4]
and the environment [5] and is also often linked to increased
levels of carbon dioxide, which is a greenhouse gas.

Fortunately, the data gathered from the combustion pro-
cess may involve essential information on the performance
of the process and on different phenomena influencing
the formation of emissions and the energy efficiency of
combustion. This information can be extracted by using
suitable data mining methods. If used and interpreted in
an appropriate way, this information can be valuable in the
analysis and optimization of the process. Therefore, it is
reasonable to develop such data analysis methods that can
respond to the new challenges in the production of energy.

The self-organizing map (SOM) [6] was originally
developed by Kohonen in the early 1980s. Thereafter, the use
of the self-organizing map algorithm for different purposes
has produced a diversified range of applications. The SOM
has been used in many different practical applications,
including exploratory data analysis, pattern recognition,
speech analysis, industrial and medical diagnostics, robotics
and instrumentation, and even control [6, 7]. Moreover,
Kasslin et al. [8] and Alhoniemi et al. [9] have introduced
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Figure 1: Cross-section of the circulating fluidized bed boiler.

SOM-based applications to process monitoring and model-
ing in many industrial cases.

The SOM has offered a good platform for many different
intelligent applications [10–17]. Furthermore, several of our
recent studies [11, 18–20] have shown the power of SOM in
the modeling of the fluidized bed combustion process. These
contributions present a relatively large variety of applications
related to process modeling, involving, for instance, model-
ing and identification of process states, emission modeling,
and variable selection and even optimization. In this paper
we expand the methodology presented in [20] for the analysis
of NOx to the modeling of other gaseous emissions in a CFB
power plant.

2. Process and Data

Fluidized bed combustion is a widely used technology for
producing energy. The process is designed principally for
the combustion of solid fuels such as coal or biomass. A
conventional circulating fluidized bed boiler (see Figure 1),
or a CFB, comprises a combustion chamber, a separator,
and a return leg to circulate the bed particles. The bed
material is composed of sand, fuel ash, and some sulfur
capturing material. Sulfur dioxide removal from flue gas
during the combustion process is possible, for example, by
adding limestone in the bed, which is considered to be one of

the most important advantages of fluidized bed combustion
[21]. The mixture of bed material is fluidized by the primary
combustion air brought in from the bottom of the chamber.

In CFBs the bed particles are in consistent movement
with the flue gases because of high fluidizing velocities.
The particles advance through the combustion chamber into
a separator, where the larger particles are extracted and
diverted back to the chamber. In the meantime, the finer
particles are separated from the cycle. Characteristic combus-
tion temperatures in CFB boilers are between 850 and 900◦C.
The advantages of CFBs include multifuel combustion, low
NOx emissions due to relatively low temperatures, and
desulfurization during combustion, which means that no
additional cleaning systems are needed for sulfur emissions.
Reduction of emissions at an early stage in the combustion
chamber is one of the principal reasons for employing the
fluidized bed concept for combustion [22].

The original process data were averaged to the resolution
of 15 minutes. The data matrix used in the modeling
included 10 000 rows with 38 variables in columns.

3. Methodology

Self-organizing maps were used in the analysis of the process
emissions. The data processing stages and their outcome
are presented in Figure 2. The area of high boiler load was
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Figure 2: Data analysis stages and their outcome.

selected to the analysis because it best presents the typical
situation in the combustion process.

3.1. Self-Organizing Map (SOM). The common use of a self-
organizing map (SOM) [6] is for mapping n-dimensional
input vectors to nodes, or neurons, for example, in a two-
dimensional lattice, or map. The map of neurons describes
variations in the statistics of the input data, and the
topological organization of the original data is maintained on
the SOM by connecting the input vectors sharing common
features to the same or neighboring neurons. The size of the
map can be varied according to the application; the bigger
the map is, the more details appear. In contrast, a smaller
map can be chosen to ensure an adequate generalization
capability.

The learning of SOM involves an unsupervised process.
First, the reference vectors are initialized randomly by using
an even distribution whose limits are determined by the
input data. During learning, the input vectors are categorized
successively into best matching units, BMUs, on the map.
The BMU is the neuron whose reference vector has the
smallest n-dimensional Euclidean distance to the input
vector. At the same time, the nearest neighbors of the BMU
are activated as well, according to a neighborhood function
(e.g., Gaussian distribution). Ultimately the reference vectors
of all activated neurons are updated.

In summary, the training of the SOM involves the
following stages:

(1) initialize the map,

(2) find BMU for the input vector by using Euclidean
distance,

(3) move the reference vector of the BMU towards the
input vector,

(4) move the reference vectors of the neighboring neu-
rons towards the input vector,

(5) repeat steps (2)–(4) for all input vectors successively,

(6) repeat steps (2)–(5) by using a smaller learning rate
factor (fine tuning),

(7) find the final BMUs for input vectors.

The SOM Toolbox [23] was used in the analysis under a
Matlab (version 7.6) software (Mathworks Inc., Natick, MA,
USA, 2008) platform. The parameters of the SOM and the
size of the map were determined by experimental testing.
Linear initialization, batch training algorithm [24], and a
Gaussian neighborhood function were used in the training.
By using the Matlab, the batch computation version of the
SOM is significantly faster than the basic SOM [23, 24] and
is thus more applicable to industrial processes involved with
large data sets. The map was taught with 10 epochs, and the
initial neighborhood had the value of 6.

3.2. K-Means Clustering. K-means [25] is a so-called par-
titional clustering algorithm [26] based on the calculation
of squared errors. K-means is one of the most popular
clustering algorithms because it is easy to implement. The
stages of the algorithm are as follows:

(1) define k cluster centers and assign k random data
vectors to them,

(2) address each data vector to the cluster with the most
similar cluster center,

(3) update the cluster centers to new memberships,

(4) in case the criterion for convergence is not met, go to
step (2). For example, minimal decrease of squared
error can be used to stop iteration.

The optimal number of clusters can be determined
by using the Davies-Bouldin index [27]. Thus, a priori
knowledge of the optimal cluster structure is unnecessary.

4. Results

4.1. Generic Model and Process States. A self-organizing map
having 24∗16 neurons was created to obtain the generic
process model. The emission models in Figure 3 involve the
use of the whole data set before the identification of process
states. The markers in the figures represent the neurons of the
SOM, which are plotted in a 2-dimensional space in respect
to their variable components shown in the axes.

After modeling, the process states of high, medium, and
low boiler load were identified. This was done by clustering
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Figure 3: Emission models after creating a 24∗16 SOM. (a) NOx, (b) CO, and (c) SO2 content [mg/Nm3] of flue gas (FG) as a function of
the bed temperature [◦C] by using the reference vectors of SOM neurons.

the reference vectors of the 24∗16 SOM with the k-means
algorithm, as presented in Figure 4. As can be seen, in this
case the borders achieved by clustering seem to follow the
degree of steam flow, that is, the boiler load.

4.2. Process State of High Power. For emission models, a SOM
having 18∗14 neurons was created within the process state of
high steam flow. The emission models for NOx, CO, and SO2

are presented in the Figures 5(a), 5(b), and 5(c), respectively.
In Figures 6(a), 6(b), and 6(c), each emission component
is presented as a function of the bed temperature, and the
color scale indicates the deviation of the bed temperature.
The markers in these figures represent the neurons of the
SOM, which are plotted in a 2-dimensional space in respect
to their variable components shown in the axes. Figures 7(a)
and 7(b) illustrate the SO2 content of flue gas as a function
of the fluidized bed temperature and the total limestone flow,

respectively. The color scale indicates the deviation of the
middle level temperature in the furnace.

5. Discussion

Previously, the SOM has been considered a visual and
functional method in tasks related to process monitoring,
diagnostics, and optimization of circulating fluidized bed
boilers [11, 18–20]. The results of this paper support our
earlier findings. All together, the SOM and k-means provide
a simple and visual way to diagnose the combustion process.
Furthermore, the results indicate that the method can be
used to define process states and illustrate them in a
user-friendly way. As a whole, it is useful to monitor the
states of the process, because they provide supplementary
information on the operation of the energy plant and on the
formation of different emission components.
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Figure 4: (a) The behavior of the main steam flow on a 24∗16 SOM and (b) a clustered SOM (k = 3), which shows the separation of process
states into three locations on the SOM.
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Figure 5: The component planes of different emission components [mg/Nm3], (a) NOx, (b) CO, and (c) SO2, on 18∗14 SOM grids after
modeling the process state of high-steam flow.
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Figure 6: Emission models of the process state of high-steam flow. (a) NOx, (b) CO, and (c) SO2 content [mg/Nm3] of flue gas (FG) as
a function of the bed temperature [◦C] by using the reference vectors of SOM neurons. Color scale indicates the deviation of the bed
temperature [◦C].
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Figure 7: Flue gas (FG) SO2 content [mg/Nm3], (a) as a function of the bed temperature [◦C] and (b) as a function of the limestone flow
[kg/s], by using the reference vectors of SOM neurons in the process state of high-steam flow. Color scale indicates the deviation of the
furnace middle level temperature [◦C].
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The reduction of harmful emissions can be a difficult
task in fluidized bed energy plants, especially because they
use inhomogeneous fuels with an altering quality, such as
coal, bark, or biomass. The results of this study reflect the
complexity of the problem. Figure 2 indicates the difficulty
of modeling the emissions. Carbon monoxide is the only
emission component that could be modeled easily without
the information on the different process states.

The approach used makes it possible to make a deep diag-
nosis on the formation of emissions. Perhaps the foremost
conclusion can be drawn from Figure 4, is that, the areas of
minimum emission rates are at variance with each other in
the process state of high power. Situations with relatively low
NOx and SO2 emissions can be found on the map, but those
areas are also characterized by a relatively high concentration
of CO. This leads to compromises in the minimization of
emissions.

In respect to nitric oxides (see Figure 6(a)), the most
distinct factor involved with their formation in the state
of high power is the bed temperature; however, the rela-
tionship is not clear in respect to the generic process
model (see Figure 3(a)). It seems, nonetheless, that the NOx

concentration increases when there is instability in the bed
temperatures (see Figure 6(a)). In addition, an important
observation is that the NOx content of flue gas could be
reduced by as much as 10% (27 mg/Nm3) by optimizing the
process.

Higher bed temperatures seem to favor the reduction
of CO in the flue gas (see Figures 3(b) and 6(b)). In
this respect, the CO emissions behave conversely to the
NOx emissions. Nevertheless, the effect of the deviation of
the bed temperature is similar on both the CO and NOx

concentrations: a stable bed temperature generally favors
the reduction of these emissions. Even as high as 18%
(3 mg/Nm3) reduction of CO can be achieved by optimizing
the process.

Figure 6(c) indicates that the formation of SO2 can be
reduced in the process state of high power with a higher
bed temperature; however, it seems that there are cases
where the SO2 concentration becomes suddenly high in the
higher temperatures. Generally speaking, it seems that the
formation of SO2 is a more complex issue than the other
emission components that were studied.

Figure 7(a) suggests that a high deviation of the middle
level temperature in the furnace explains the high concen-
trations of SO2 in the higher bed temperatures. However,
Figure 7(b) suggests that a certain level of limestone flow
should be maintained to keep the SO2 concentration below
300 mg/Nm3. It is presumable that the changes in the sulfur
content of fuel can affect greatly the formation of sulfur
dioxide in the process, which can explain the high deviation
in the SO2 concentration with higher bed temperatures.

In a more general level, the results show that the data
analysis method presented can be excellent in cases where
large amounts of data have to be processed to get a rapid
diagnosis on process emissions. In addition, clustering the
data samples into subcategories, or process states, provides
supplementary value and extra accuracy to the emission
models. Furthermore, the ability of the method to reveal

nonlinear and multivariate interactions is a major advantage.
For these reasons, the analysis method presented is a
powerful choice for modeling industrial processes.

6. Conclusions

Solutions to several environmental problems are currently
being searched for. It is evident that in the future also the
energy plants have to be able to produce their energy with
a lesser amount of harmful, gaseous emissions. The method
presented provides a fruitful way to diagnose processes and
offers new possibilities for the analysis of process emissions
in the near future.

For instance, presently only a few gaseous emission
components are included in the international emission
trading. Nonetheless, the emission regulations are becoming
tighter worldwide due to the growing interests in different
environmental issues. As new emission types will be added
to the trading of emissions in the future, the method can
be used for emission cost modeling after the definition of
an appropriate cost function. Alternatively, the methodology
can be used to more generic process optimization, for
example, to optimize the total profit of producing steam in
fluidized bed boilers.
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Y. Hiltunen, “Emission analysis of a fluidized bed boiler by
using self-organizing maps,” in Proceedings of the International
Conference on Adaptive and Natural Computing Algorithms
(ICANNGA ’09), M. Kolehmainen, P. Toivanen, and B.
Beliczynski, Eds., vol. 5495, Springer, 2009.
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